Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection.
نویسندگان
چکیده
The ability to dissipate large fractions of their absorbed light energy as heat is a vital photoprotective function of the peripheral light-harvesting pigment-protein complexes in photosystem II of plants. The major component of this process, known as qE, is characterised by the appearance of low-energy (red-shifted) absorption and fluorescence bands. Although the appearance of these red states has been established, the molecular mechanism, their site and particularly their involvement in qE are strongly debated. Here, room-temperature single-molecule fluorescence spectroscopy was used to study the red emission states of the major plant light-harvesting complex (LHCII) in different environments, in particular conditions mimicking qE. It was found that most states correspond to peak emission at around 700nm and are unrelated to energy dissipative states, though their frequency of occurrence increased under conditions that mimicked qE. Longer-wavelength emission appeared to be directly related to energy dissipative states, in particular emission beyond 770nm. The ensemble average of the red emission bands shares many properties with those obtained from previous bulk in vitro and in vivo studies. We propose the existence of at least three excitation energy dissipating mechanisms in LHCII, each of which is associated with a different spectral signature and whose contribution to qE is determined by environmental control of protein conformational disorder. Emission at 700nm is attributed to a conformational change in the Lut 2 domain, which is facilitated by the conformational change associated with the primary quenching mechanism involving Lut 1.
منابع مشابه
The specificity of controlled protein disorder in the photoprotection of plants.
Light-harvesting pigment-protein complexes of photosystem II of plants have a dual function: they efficiently use absorbed energy for photosynthesis at limiting sunlight intensity and dissipate the excess energy at saturating intensity for photoprotection. Recent single-molecule spectroscopy studies on the trimeric LHCII complex showed that environmental control of the intrinsic protein disorde...
متن کاملSolving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy.
The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X...
متن کاملPhotoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II.
Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these sam...
متن کاملFrom light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII)
Light-Harvesting Complex II (LHCII) is largely responsible for light absorption and excitation energy transfer in plants in light-limiting conditions, while in high-light it participates in photoprotection. It is generally believed that LHCII can change its function by switching between different conformations. However, the underlying molecular picture has not been elucidated yet. The available...
متن کاملA Role for a Light-Harvesting Antenna Complex of Photosystem II in Photoprotection
High light (beyond what is needed for maximum photosynthesis) is a major plant stress. Under extreme high-light conditions, the photosynthetic apparatus can be damaged irreversibly, but plants and algae have devised various strategies to protect themselves (photoprotection) (Björkman and Demmig-Adams, 1994). One of the strategies for survival in high light is to eliminate the excess absorbed en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1837 7 شماره
صفحات -
تاریخ انتشار 2014